Search results for "multipartite entanglement"
showing 10 items of 42 documents
Ground-state fidelity and bipartite entanglement in the Bose-Hubbard model.
2007
We analyze the quantum phase transition in the Bose-Hubbard model borrowing two tools from quantum-information theory, i.e. the ground-state fidelity and entanglement measures. We consider systems at unitary filling comprising up to 50 sites and show for the first time that a finite-size scaling analysis of these quantities provides excellent estimates for the quantum critical point.We conclude that fidelity is particularly suited for revealing a quantum phase transition and pinning down the critical point thereof, while the success of entanglement measures depends on the mechanisms governing the transition.
2014
Here we investigate the connection between topological order and the geometric entanglement, as measured by the logarithm of the overlap between a given state and its closest product state of blocks. We do this for a variety of topologically-ordered systems such as the toric code, double semion, color code, and quantum double models. As happens for the entanglement entropy, we find that for sufficiently large block sizes the geometric entanglement is, up to possible sub-leading corrections, the sum of two contributions: a bulk contribution obeying a boundary law times the number of blocks, and a contribution quantifying the underlying pattern of long-range entanglement of the topologically-…
Genuine tripartite entanglement in a spin-star network at thermal equilibrium
2010
In a recent paper [M. Huber {\it et al}, Phys. Rev. Lett. {\bf 104}, 210501 (2010)] new criteria to find out the presence of multipartite entanglement have been given. We exploit these tools in order to study thermal entanglement in a spin-star network made of three peripheral spins interacting with a central one. Genuine tripartite entanglement is found in a wide range of the relevant parameters. A comparison between predictions based on the new criteria and on the tripartite negativity is also given.
Topological Minimally Entangled States via Geometric Measure
2014
Here we show how the Minimally Entangled States (MES) of a 2d system with topological order can be identified using the geometric measure of entanglement. We show this by minimizing this measure for the doubled semion, doubled Fibonacci and toric code models on a torus with non-trivial topological partitions. Our calculations are done either quasi-exactly for small system sizes, or using the tensor network approach in [R. Orus, T.-C. Wei, O. Buerschaper, A. Garcia-Saez, arXiv:1406.0585] for large sizes. As a byproduct of our methods, we see that the minimisation of the geometric entanglement can also determine the number of Abelian quasiparticle excitations in a given model. The results in …
Recovering Quantum Properties of Continuous-Variable States in the Presence of Measurement Errors.
2016
We present two results which combined enable one to reliably detect multimode, multipartite entanglement in the presence of measurement errors. The first result leads to a method to compute the best (approximated) physical covariance matrix given a measured non-physical one. The other result states that a widely used entanglement condition is a consequence of negativity of partial transposition. Our approach can quickly verify entanglement of experimentally obtained multipartite states, which is demonstrated on several realistic examples. Compared to existing detection schemes, ours is very simple and efficient. In particular, it does not require any complicated optimizations.
Entanglement in Gaussian matrix-product states
2006
Gaussian matrix product states are obtained as the outputs of projection operations from an ancillary space of M infinitely entangled bonds connecting neighboring sites, applied at each of N sites of an harmonic chain. Replacing the projections by associated Gaussian states, the 'building blocks', we show that the entanglement range in translationally-invariant Gaussian matrix product states depends on how entangled the building blocks are. In particular, infinite entanglement in the building blocks produces fully symmetric Gaussian states with maximum entanglement range. From their peculiar properties of entanglement sharing, a basic difference with spin chains is revealed: Gaussian matrix…
A Possible Time-Dependent Generalization of the Bipartite Quantum Marginal Problem
2018
In this work we study an inverse dynamical problem for a bipartite quantum system governed by the time local master equation: to find the class of generators which give rise to a certain time evolution with the constraint of fixed reduced states (marginals). The compatibility of such choice with a global unitary evolution is considered. For the non unitary case we propose a systematic method to reconstruct examples of master equations and address them to different physical scenarios.
Distillation of entanglement between distant systems by repeated measurements on an entanglement mediator
2004
A recently proposed purification method, in which the Zeno-like measurements of a subsystem can bring about a distillation of another subsystem in interaction with the former, is utilized to yield entangled states between distant systems. It is shown that the measurements of a two-level system locally interacting with other two spatially separated not coupled subsystems, can distill entangled states from the latter irrespectively of the initial states of the two subsystems.
Topological transitions from multipartite entanglement with tensor networks: a procedure for sharper and faster characterization
2014
Topological order in a 2d quantum matter can be determined by the topological contribution to the entanglement R\'enyi entropies. However, when close to a quantum phase transition, its calculation becomes cumbersome. Here we show how topological phase transitions in 2d systems can be much better assessed by multipartite entanglement, as measured by the topological geometric entanglement of blocks. Specifically, we present an efficient tensor network algorithm based on Projected Entangled Pair States to compute this quantity for a torus partitioned into cylinders, and then use this method to find sharp evidence of topological phase transitions in 2d systems with a string-tension perturbation…
A criterion for entanglement in two two-level systems
2007
We prove a necessary and sufficient condition for the occurrence of entanglement in two two-level systems, simple enough to be of experimental interest. Our results are illustrated in the context of a spin star system analyzing the exact entanglement evolution of the central couple of spins.